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Abstract

Previous studies have shown that the Space Shuttle

Orbiter can achieve larger orbit inclination changes using

an aerodynamic turn than can be obtained using a rocket

motor burn. This analysis determines the angle of attack and

bank angle histories which maximize the change in inclin-

ation angle while satisfying final altitude and velocity

loss constraints. The angle of attack and bank angle are

modelled as polynomial functions of time with unknown

coefficients. The optimum values of the coefficients are

determined by a gradient optimization technique. Additionally,

the sensitivity of the change in inclination angle to changes

in the orbit apogee altitude is examined. It is shown that

the Space Shuttle Orbiter can obtain higher inclination

angle changes from orbits with higher apogee altitudes.
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USE OF AN AERODYNAMIC TURN TO

MAXIMIZE THE ORBIT INCLINATION

CHANGE FOR THE SPACE SHUTTLE ORBITER

I. Introduction

Background

When the Space Shuttle Orbiter becomes operational,

new spacecraft capabilities will become available to space

mission planners. Not only is the orbiter reusable, but

for the first time mission planners will also have a

spacecraft with significant aerodynamic capabilities.

In certain regimes, the orbiter has a lift to drag ratio

near two. When operating in this regime, the shuttle has

the option of orienting the lift vector so that a change

in orbit inclination is now possible via an aerodynamic

turn rather than the conventional rocket motor burn method.

What this offers the mission planner is a twofold capability.

One, the orbiter can use the aerodynamic turn to increase

the number of maneuvers possible during the course of a

mission which would allow the servicing of more satellites.

Secondly, the shuttle may trade fuel for increased payload

at launch and still be able to accomplish a required

minimum number of orbital maneuvers using the aerodynamic

turn.

It is desirable to use the aerodynamic turn to achieve

an inclination change if the maneuver is more efficient

than the conventional rocket motor technique. The

aerodynamic turn is more efficient than the rocket burn



if one of the following two conditions are met: (1) either

the aerodynamic turn requires less velocity loss due to

air drag (Av) to achieve the same inclination change or

(2) more of an inclination change is available for the

same velocity loss when comparing the aerodynamic turn

to the rocket burn.

if the aerodynamic turn is more efficient than the

rocket burn, the orbiter will have several new options.

First, the shuttle can use the aerodynamic turn to achieve

an inclination change and then use the rocket motor to

regain the velocity lost to aerodynamic drag. The end

result would be a larger orbit inclination change than would

be possible using only the rocket motor. Using this method,

the -'1nltle orbit would have the same shape, but a new

inclination. Secondly, the shuttle could use both the

aerodynamic turn and the rocket motor to achieve a larger

inclination change than is possible by either method alone.

The resulting orbit would have not only a new inclination,

but a different shape. Obviously, many variations of these

two extremes are also available.

Previous research (Ref 5) shows that for perigee

altitudes of 85 km and lower, the aerodynamic turn maneuver

does achieve the same inclination change for less Av

cost than the rocket motor burn. This earlier study on

the aerodynamic turn attempted to optimize the angle of

attack and bank angle control history which minimized

the work done by air drag (Av) while satisfying end conditions

2



that specified final altitude and orbit inclination change.

Because of this approach to the problem, the optimization

technique did not function properly and a non-optimum

approach to the efficiency of the aerodynamic turn was

finally taken. The aerodynamic turn maneuver was found

to be more efficient than the rocket motor burn and the

maximum orbit fnclination change obtained by the aerodynamic

turn using a con:stant angle of attack and bank angle

0throughout the maneuver was .78° . This earlier study

recommended that research be continued on the subject

with a restructured optimization problem and that the

aerodynamic turn maneuver be limited to 95 km and lower

perigee altitudes.

Problem Statement and Scope

This current investigation seeks, first, to find

another approach to the optimization problem so that the

difficulties encountered in the previous research (Ref 5:

49-50) are eliminated. If the problem can be successfully

restated so that optimization is possible, the maximum

orbit inclination change obtainable using the aerodynamic

turn maneuver is desired.

The aerodynamic turn optimization problem is therefore

restated as follows: Find the angle of attack and bank

angle histories which maximize inclination change while

satisfying end conditions that require return'ing the

shuttle to a given final altitude with a specified accept-

able velocity loss due to air drag.

3



Because the shuttle must obey the appropriate equations

of motion during the aerodynamic turn maneuver, the max-

imization of inclination change is an optimal control problem.

While there are several ways to solve an optimal control

problem, the one chosen here is the Second-Order Control

Parameter technique (Ref 7). In this method the orbiter

controls are re-presented suboptimally as polynomial

furctions of time. The coefficients of the polynomials

are chosen to optimize the performance index (maximum

inclination change) and satisfy the end conditions (final

altitude and velocity). Higher order control polynomials

are investigated to determine their effect on inclination

change and what order controls are necessary to accurately

approximate the optimal controls. Additionally, a sensit-

ivity analysis is conducted on various apogee altitudes

to determine their effect on inclination change.

The remainder of this paper is arranged in the following

manner: Chapter II discusses the orbiter equations of

motion and the model atmosphere used in this study.

Explanations of the methods used to generate coefficients

of lift and drag are also given. Chapter III covers the

optimization routine used, why it Kas selected and how it

is implemented. Chapter IV reports on how the initial

values of control coefficients and end conditions used in

the optimization routine are selected. Chapter V lists

the results and conclusions generated by this study.



II. System Dynamics and Model Atmosphere

Background

The Space Shuttle Orbiter is a dynamic system and

must, therefore, obey Newton's laws of motion. Specifically,

Newton's second law relates the aerodynamic and gravitational

forces acting on the orbiter to the orbiter acceleration,

EF=ma. This relationship can be expressed as a set of

differential equations which describe the motion of the

shuttle as it passes through the atmosphere. B, pore these

equations of motion can be derived, a coordinate reference

frame must be specified.

Coordinate Reference Frame

For this study, two coordinate reference frames

are specified. The first, an X, Y, Z frame is earth centered,

non-rotating, and inertial (Fig 1). The X, Y axes are

in the earth equitorial plane and Z is chosen to complete

a right-hand coordinate frame.

The second frame is the Vrel , M, L which is fixed

at the center of mass of the orbiter (Fig 1). The

V axis points into the relative wind and the angle
re 1

between the Vre I axis and the shuttle's longitudinal axis

is the orbiter angle of attack a. The M axis establishes

a local horizontal for the shuttle and L is chosen to

complete the right-hand coordinate frame. The angle
4.

between the shuttle lift vector and the L axis establishes

the angle of bank p.

5
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The Orbiter's aerodynamic forces are readily

expressed in terms of the body fixed frame. These forces

are

LIFT =I LIFTI (cos4L - sin M)
4.4

DRAG = DRAGI Vre1

where ILIFTI and IDRAGI represent the scalar magnitude

of the lift and drag vector, respectively. Vrel' M, and L

are unit vectors of the V re, M, L frame. The position
re~- 1 4 4 4.

and velocity of the orbiter expressed in terms of X, Y, Z

frame unit vectors is

r = XI + YJ + Zi

4.

v = XI + YJ + ZK

where X, Y, Z, X, Y, and Z are the system state variables.

The V rel, M, L vectors can be expressed as

V = v+ wxr
rel

M =Vrelxr,

4. .rel

where w = earth angular velocity. Substitution of the expressions

for r and v into these equations allows V rel, M, and L to be

expressed in terms of the state variables and the inertial

frame unit vectors. This information allows the generation

of a transformation matrix T, which will convert forces

expressed in terms of the body frame to forces expressed

in the inertial reference frame (Ref 5:16).
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Equations of Motion

In addition to lift and drag, there is also a gravity

force acting on the orbiter. The forces acting on the

shuttle expressed in the inertial frame are:

F = Gravity YZ + LiftxyZ + DragxyZ

However, drag and lift forces are expressed in the body

frame and will have to be converted to the inertial frame

using the transformation matrix T. Therefore, the summation

of forces is rewritten as:

EF = Gravity X Z + T(LitV relML) + T(Dragv relML)

The aerodynamic forces listed above can be written

as three second-order differential equations (Ref 5:17).

These equations can be further reduced to six first-order

equations which become the shuttle equations of motion.

These equations of motion are listed below.

Letting w I = X

w 2 =Y

w = Z

w 4 =X

w = Y

w6  Z

the equations of motion are

w
wI  w4

w 2  w w5

w3 = w6

8



= -(GM/r 3)X + ( LIFT /M)T1 - ( DRAG

5 = -(GM/r 3 )Y + ( LIFT /M)T 3 - ( DRAG /M)T 4

= -(GM/r 3 )Z + ( LIFT /M)T 5 - ( DRAG

where T i = 1 to 6 is the appropriate element of the

transformation matrix (Ref 5:18).

Assumptions

The equations of motion listed above are based on the

following assumptions:

(1) The earth is spherical.

(2) The earth is inertial.

(3) The crbiter is a point mass. All forces act

through this point which is the center of gravity.

(4) No aerodynamic sideslip occurs in the atmosphere.

(5) Atmospheric winds rotate with the earth.

It is possible to assume the earth is spherical because the

aerodynamic turn is initiated from an equitorial orbit.

Final state inclination is still nearly equitorial and

the non-spherical effects of the earth are neglibible.

The earth is treated as inertial since the time spent

in the atmosphere during the aerodynamic turn is quite short

(approximately 10 min) and the non-inertial effects of

the earth would not be a factor in this length of time.

It is reasonable to expect that a coordinated turn will

be flown during the aerodynamic maneuver so that no moments

9



will be generated and the orbiter can be approximated

as a point source. Similarly, the maneuver will be flown

so that the relative velocity vector is nearly along the

longitudinal axis of the orbiter in order to keep the

heat generated by hypersonic speeds through the atmosphere

on the main heat-protective surfaces. Heat generated

on the side and top of the orbiter will be kept to a

minimum if sideslip is minimized. Finally, the upper

atmosphere winds are much too complex to model exactly

in a study of this size. However, to treat the winds at

altitude as inertial would be too much of a simplification.

Accordingly, the main effect of the winds on the shuttle

orbit are modelled by assuming the winds to rotate with

the earth (Ref 5:12-13).

Lift and Drag Computations

The expressions used to generate Lift and Drag

have already been listed in terms of the reference frames.

Restated in terms of the state variables, the lift and

drag equations are

LIFT = 2p(X,yZ)CL(Xy, Z  r ( 9 2 X, Z)S

2

DRAG = l(X,Y,Z)CD(XYZXYZ)Vre I ( X Y Z X Y Z ) S

The reference surface area (S) of the orbiter is a known

constant value and the relative velocity can readily be

obtained from integration of the equations of motion.

However, the values for the atmospheric density (P)

10
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and the coefficients of lift and drag (CL and CD) wll

have to be calculated.

The orbiter coefficients of lift and drag are listed

in Tables I - IV (Ref 6). These coefficients are a

functions of angle of attack (alpha) and the viscous

parameter (VBAR). While angle of attack is directly

obtainable, because it will be shown to be a control

variable, the VBAR term is a function of the orbiter state.

VBAR = M (C./Re)

where M = freestream mach number

CW(T,M) = proportionality factor for linear-viscosity

temperature relationship

Re(p,V ,S,Kinetic Viscosity) = Freestream Reynolds
rel'

Number

From the equations listed for Lift, Drag, and VBAR it is

apparent that a means of determining the state of the

atmosphere is needed.

Model Atmosphere

The model chosen to represent the atmosphere in this

study is the 1962 Standard Atmosphere (Ref 11). While

a more current version of this model does exist, the

1962 data is used because the Space Shuttle Orbiter Lift

and Drag coefficients are based on the 1962 model.

11



The simplifying assumption that geopotential altitude is

equal to geometric altitude is also used here and results

in a five to seven percent deviation from the 1962

Standard Atmosphere Model (Ref 5:10). This assumption

allows the variation of gravitational acceleration with

altitude to be neglected.

With this model, the density, temperature, molecular

weight, and viscosity of the atmosphere at any altitude

out to 700 km is directly available. These atmospheric

parameters are used in the computation of VBAR (Ref 5:22).

With VBAR calculated and the angle of attack known,

orbiter lift and drag coefficient tables can

be entered and C and C can be determined (Tables I - IV).
L D

A bivariate interpolation scheme is used to determine

the values for CL and CD when VBAR and angle of attack

are between the tabulated values listed in these tables.

For values of VBAR between .01 and .08 the CL and

CD values in Tables I - IV were determined experimentally,

while for VBAR values between .08 and 5.2, CL and CD

values were determined analytically via the Lockheed

Bridging Formula (Appendix A). This formula bridges the

transition between free-molecular flow and continum flow

(Ref 5:23).
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Summary

The orbiter system dynamics are represented by differ-

ential equations which form the equations of motion. Inte-

gration of the equations of motion along the orbit allows

the determination of the shuttle state at each integration

time step. With the state of the shuttle known, the model

atmosphere is used to determine the atmospheric parameters

required for calculation of orbiter lift and drag. Lift

and drag values are then used in generating an updated

orbiter state.

The orbiter state is expressed in terms of eight

variables; X, Y, Z, X, Y, Z, 4, a. Since the equations of

motion are six first-order differential equations and

there are eight unknowns, two of the unknown values

are controlled. For this study, angle of attack (a) and

angle of bank ( ) are the controlled values. The resulting

solution of the system state is then checked and changes

are made to the controlled values which result in an improved

state. This process is repeated through an optimization

routine which generates final values for the two variables

that result in the "best" system state.

17



III. Optimization Technique

Background

The purpose of this thesis is to find the angle of

attack and bank angle histories which obtain the maximum

orbit inclination change during an aerodynamic turn maneuver.

Since the initial state of the orbiter and functions of

the final state are prescribed, and the orbiter is constrained

by the equations of motion, this problem can be treated

as a classical optimal control problem where the goal is to

minimize the performance index, I. A description of the

elements of the optimal control problem as it applies to the

aerodynamic turn maneuver follows.

Optimal Control

In the aerodynamic turn maneuver the performance index

to be minimized is negative inclination change (-Ai).

Therefore, the problem is a maximization problem. To calculate

the inclination change, the angular momentum vector of the

final state (Hf) is compared to the angular momentum vector

of the initial state (Hi). These vectors are chosen since

they involve the complete orbiter state and are normal to

the orbit plane (Fig 2). The inclination change is obtained

by determining the change in direction between Hf and Hi.

18 1
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Since = r x v

where r = orbiter position vector

v = orbiter velocity vector

the inner product of Af and Hi gives the expression for the

change in inclination:

Ai = Cos - I (rf x vf) (rf x vf

f x vfl Irf xvf

where Ir x vI is the scalar magnitude of the vector cross

product.

The initial position and velocity of the orbiter is

specified in terms of the state variables. The shuttle

proceeds from these initial conditions to a specified set

of end conditions while maximizing the inclination change.

The time required to complete this maneuver, tf, is

unspecified. For this problem the specified end conditions,

M, are altitude and velocity at tf. The final altitude

is to equal the initial altitude and final velocity is to

equal initial velocity minus an acceptable velocity loss

due to air drag (Av). Since the orbiter is a dynamic

system, it is subject to orbit constraints which are the

equations of motion listed in Chapter II. Also, the shuttle

is subject to the control constraints that limit angle of

attack (20°0 <a < 500) and bank angle (00 < < 1800).

Suboptimal Control

The optimal control problem as outlined above is

reduced to a suboptimal control problem by approximating

20



the control variables by a functional form which involves

a number of unknown parameters (Ref 8). Suboptimal control

is chosen in preference to optimal control because the

algorithm to solve the optimal control problem requires

controls to be specified as a function of time. The time

span of the aerodynamic turn could therefore, generato

large control vectors. In addition, the values to be guessed

in the optimal control algorithm do not have a physical signif-

icance. In the suboptimal approach, there is not only a very

small number of control coefficients to be guessed, but they also

have a physical relevence which makes the initial guesses

much easier to generate. For this analysis, angle of attack

and bank angle are

m
CL = biC

i=O

n
S= E ciCi

i=O

where bi and ci are the unknown parameters and C. is the

functional form. Chebyshev polynomials are chosen as the

functional form because they are orthogonal. This prevents

the matrices used by the optimization scheme from becoming

singular due to possible linear dependence of the polynomials.

To simplify the problem, the Chebyshev polynomials should

be defined over a constant interval. Through the use of

Long's transformation, the free final time problem is

transformed into a fixed final time problem. Long's

21



I

transformation defines a non-dimensional time

T = t/t

where the range of T is [0,1j. The Chebyshev polynomial

may then be defined over the interval [0,1]. The final time (tf)

is now another unknown parameter of the problem. Thus, the

vector of unknown parameters, a, is

a b.[~[cl
Since the problem is now treated suboptimally, one

objective is to select the correct number of controls,

m and n, that accurately approximate the optimal controls.

If the order of the control polynomials is too small,

the results will not accurately represent the optimal

controls. On the other hand, if too high an order control

polynomial is selected, the small gain in the performance

index will not warrant the large increase in computer time

required to obtain the converged solution. The order of

the control polynomial representing the angle of attack

need not necessarily equal the order of the control poly-

nomial representing the bank angle.

Second-Order Parameter Optimization

The optimal control problem may now be restated as

a parameter optimization problem, where the performance

index, the end condition constraints, the control variable

inequality constraints, and the differential constraints

all depend on only the unknown parameters. The solution
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to this problem may be found by forming the augmented

performance index, F,

F(a,v) = l(a) + V TM(a)

wherev is the vector of constant Lagrange multipliers.

The conditions to be satisfied by an extremal point are

F T(a,v) = 0 and M(a) = 0.
a

The values of the parameters and the Lagrange multipliers

are now guessed. Unless the guess is the extremal value, it

will be observed that

FT  0 and M $ 0.
a

In order to drive FT and M to zero, these quantities are thena

linearized about the guessed values of a and v, so that

6FT = F 6a + MT6v and 6M = M 6a
a aa a a

where

a is a p x 1 vector of parameters

F is a 1 x p vector of 1s t partial derivitives
a

F aa is a p x p matrix of 2 nd partial derivitives
Ma is a m x p matrix of s t partial derivitives

6() is the variation of () such that 6()=()new-()old.

Since we desire (FT or M) = 0, the following relations
a new

are valid

6FT  PFT  and 6M = -QM
a a

where Q and P are weighting factors which control the end

condition satisfaction and optimization, respectively.
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The expressions for 6a and 6 v can now be generated so that

6a = (-F-I(PF T + MT 6 v)
aa a a

6 v = (M F -IM T) -1 (-PM F-I F T + QM).a aa a a aa a

Rather than guessing an initial value for v, it can

be computed using the gradient technique with Faa set

equal to the identity matrix and 6a set equal to zero;

then

V = (MaMT) -((Q/P)M-M I).
a a a a

If it is desired to use a gradient technique to compute

the changes in a, those changes are given by

6a = -P(Fa)

Any reasonable value for the control coefficients can be

guessed as long as the guess conforms to the control

constraints. However, in the next chapter an approach

to guessing accurate values for the coefficients will be

explained.
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IV. Optimization Starting Values

Previous research (Ref 5) indicated the atmospheric

turn maneuver is profitable only at perigee altitudes of

85 km and below. Table V lists the orbit inclination

changes which resulted from using a 600 angle of bank at

various perigee altitudes.

Table V

Inclination Changes Obtained From Previous Research

85 km 80 km 75 km 70 km

.220 .430 .550 .780

* The 70 km perigee orbit uses a bank angle of 500.

The bank angle of 600 was chosen initially since it

results in the most inclination change without allowing the

maneuver to become a total reentry that will not leave the

atmosphere.

Only perigee altitudes of 80 km are considered in this

study. This choice is made since inclination changes

achieved in an orbit with a perigee higher than 80 km are

extremely small and the viscous parameter, VBAR, was often

less than 0.01 at perigee altitudes of 75 km and less.

The orbiter lift and drag coefficient data available is

limited to a VBAR greater than or equal to 0.01.
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Orbit Selection

Once a perigee altitude is established, the selection

of an apogee altitude will allow the determination of the

orbital elements. Since the orbit used in the previous

study is not specified, three different orbits are used

here. A low apogee of 300 km, a medium apogee of 500 km and

a high apogee of 650 km are used. The high apogee is

selected to remain below the hazard posed to manned flights

by the Van Allen radiation fields. All orbits are considered

initially to be direct equitorial.

The three orbits used in this study are initially at

a zero degree inclination and have an 80 km perigee. The

mean earth radius used for computations is 6378.135 km. The

Earth gravitational parameter (P) used for this study is

3.986012 x l05 km 3/sec 2. The following two-body relation-

ships are used to calculate the necessary orbital elements

for each of the three reference orbits and assume no air

drag by the atmosphere:
r

e = 1--
a

2p = a(l-e

v = (/7(l+ecosv))cosv

2 r a3/2
TP = 77

2a

The results of these calculations are listed in Table VI.
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Table VI

Reference Orbit Elements

ORBIT 80/300 80/500 80/650

e .0167675242 .0314734553 .0422460329

p 6566.293 km 6661.395 km 6730.966 km

v 7.6608 km/sec 7.4920 km/sec 7.3703 km/sec

TP 88.29 min 90.31 min 91.84 min

-30.344 -29.889 -29.556

* Velocity listed is at apogee (v=1800 )
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Initial Position and Velocity Selection

There is enough information available now to initialize

the optimization routine with the position and velocity of

the orbiter at apogee and integrate the entire orbit.

However, it is assumed that significant orbit plane change

will occur only in atmosphere of a certain density. Plane

change above this altitude will be neglible. From a study

of the 1962 Standard Atmospheric model (Ref 11), an altitude

of 100 km above the earth's surface and below is assumed as

the level of sufficient density for measurable plane change.

The orbiter is inside the atmosphere, as defined here, for

approximately 10 minutes per orbit. It is therefore

desirable to pick a starting position and velocity for

each reference orbit that is just above the 100 km altitude.

This will reduce the amount of computer time needed

each iteration by neglecting that portion of the orbit

in which no appreciable plane change occurs. To

determine this starting position and velocity, the inte-

gration routine is run from apogee with angle of bank and

angle of attack set to zero and the time parameter set to

the period of the orbit. Integration by this method

gives the position and velocity vector for each time step

and from this a height above the Earth is easily calculated.

Integration of the orbit in this manner results in a perigee

one to two kilometers lower than that calculated using the

two-body problem assuming no air drag. These results are

still valid, however, since integration using angles of
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attack and bank not equal to zero results in a shuttle

perigee between 79 and 82 kilometers, depending on the

orbit.

From these integrations of the orbit, initial position

and velocity vectors are chosen. These vectors are listed

in Table VII The position and velocity vectors become

the two constraints for the optimization routine. The

program is designed to return the shuttle to the starting

height on the other side of perigee and to the scalar

value of the starting velocity minus a specified, accept-

able velocity loss due to air drag.

Control Coefficient Selection

It is now necessary to initialize the optimization

routine with values for the time, angle of attack, and

angle of bank control parameters. The optimization routine

is designed with weighting factors that determine the

priority the routine places on either achieving the end

constraints or optimizing the plane change. Initially,

emphasis is placed in meeting the end constraints until

they are very close to the specified values. At that time,

the optimization weighting function, which has been kept

small, is slowly increased. In order to minimize the computer

time necessary to meet the end conditions, the control

parameters which get the final states closest to the end

conditions are chosen to be the initial guess.
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Table VII

Initial Position and Velocity in Inertial Frame*

INITIAL POSITION

80/300 -3103.9951 1 5724.3016

ORBIT 80/500 -3238.5651 I 5680.0536 J

80/650 -4606.8106 I 4636.5561 1

INITIAL VELOCITY

80/300 -6.8503 I -3.8470 J

ORBIT 80/500 -6.7306 I -4.0819

80/650 -5.7871 I -5.4225

* All position and velocity vectors are initially
equitorial and have no k components.
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To find the best starting parameters, over 150 inte-

gration runs were made for a single orbit with %aricus angles

of attack and bank angle values. This allows a deternina'ion

of how well various combinations of the control farameters

meet the constraints. A listing of the pertiner.t results

from these runs for the 80/300, 80/500, 80/650 orbits

is listed in Tables VIII,IX, and X respectiv-Ky.

The first value listed in Tables VIII, IX, and X.

is the difference between the starting and the final altitude

at the end of integration. A positive value means the

shuttle finished higher than the initial altitude. The

second value in the tables is the difference in initial

velocity loss for the maneuver. In this case, the allowable

velocity loss is 60 mps. Positive velocity values mean

the orbiter lost less than 60 mps during the orbit. A

negative value means the orbiter lost not only the 60 mps,

but also the additional listed velocity. The third value

in the tables is the-inclination change that results from

those control parameters. With this data, the "best"

possible control parameters can be chosen that will

initially allow the optimization routine to not only come

closest to the desired end conditions, but also give the

largest possible inclination change.
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Table VIII

End Condition Miss Errors 80/300 Orbit

ANGIE OF ATTACK

20 °  250 300

A LT -. .. 17 -7. 1' -19.27 km

00

.c .04 .06 .18 deg

ANGLE ALT MISS -2.2> -. 47 -2. km

O F 0 0 V E L M! S S; . 0 0 , . 0 0 5 . 0 9 3 k p s

B A N K 
A, . 01 . 2 0 d e g

ALT MiS -3.57 -0.21 -22.91 m

15. VEL T .009 .005 .00 k s

Ai .15 .17 .22 deg

ALT ISS -5.66 -12.66 -26.04 km

2 0 0 V I S . 0 1 0 . 0 0 6 . 00 k ' s

i .20 .24 .28 deg

Av = 60 mps
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Table IX

End Condition Miss Errors 80/500 Orbit

ANGLE OF ATTACK

200 250 300

ALT MISS 32 7 29. 1 22.5 km

0 VEL MISS -.01. 16 -.018 ,S

0. 0. 0.

ALT mISS 31.9 9m
50 VEL MISS -.010 - .016 -. 018 "ps

.03 .04 .0- eg

ANGLE ALT MISS 31.4 9.1 2_.9 km

OF 10 VEL MISS -. 0101 kps

Ao .06 .07 .09 dec

AL MISS 31.6 27.1 19.5

15 °  VEL MISS -. 010 -. 015 -. 017 kps

,\i .08 .11 .13 deg

ALT MISS 30.2 26.6 18.0 km

200 VEL MISS -. 009 -. 014 -. 016 kos

Ai- .11 .14 .17 deg

Av = 60 mps
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Table X

End Condition Miss Errors 80/650 Orbit

ANGLE OF ATTACK

200 250 300

ALT MISS 159.7 152.5 140. km

0 VEL MISS -. 164 -. 166 -. 163 kpS

Ai 0. 0. 0. deg
ALT MISS 161.1 152.6 141.0 km

5 VEL MISS -. 164 -.166 -. 163 kps

Ai .03 .04 .05 deg

ANGLE ALT MISSI 161.1 153.2 139.9 km

OF 100 VEL 4IS -. 164 -. 165 -. 162 kps

BANK Ai .07 .09 .10 deg

ALT MISS 157.8 149.7 136.3 km

150 VEL MISS -. 163 -. 164 -.161 kPs
Ai .10 .13 .15 deg

A LT MISS 156.6 147.6 134.9 km

200 VEL MISS -. 163 -.163 -. 159 kps

Ai .14 _ .17 .20 deg

Av - 60 mps
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V. Results and Conclusions

Optimization Analysis

A second-order technique to generate updated control

coefficients is preferred to a gradient technique because

of faster convergence. In the suboptimal approach to the

aerodynamic turn maneuver that was outlined in Chapter III,

the second-order parameter method requires the computation

of the F matrix, a second derivative matrix, by numerical
aa

means. The numerical approach to solving for F aais chosen

over an analytical approach because it requires considerably

less computer time. However, numerical differentiation

does require perturbations in the quantities the derivative

is taken with respect to. For example, numerical computation

of F requires perturbation of the a's.aa

Early in the control parameter optimization search,

problems were encountered with the second derivatives. The

values of the elements of the F matrix were found to
aa

be changing erratically by a power of ten. Since the

size of the perturbations of the a's affect the behavior

of the F matrix, a parametric study using different size
aa

perturbations was conducted to determine whether or not the

erratic behavior of the F matrix could be corrected.
aa

After evaluating the effects of various size pertur-

bations on the F matrix, it was determined that continued
aa
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efforts to optimize using the second-order parameter

method would fail to produce a sequence of control

histories which would ultimately converge. A switch

to the gradient technique was made at this time to

see if the optimization routine would move in a consistent

direction toward convergence.

While the gradient technique did continually move

toward an optimum control history and improve both the

end conditions and inclination change, it was very costly

in terms of computer time. The results listed in this

chapter required over 32000 CP seconds of computer time

to generate. In retrospect, it would have been faster in

both my time and computer time to use another second-order

method rather than continue with the gradient technique

for as long as was ultimately required for convergence.

Any additional research on the aerodynamic turn maneuver

should utilize a second-order method such as the Davidson-

Fletcher-Powell variable metric technique. If continued

use of a gradient method is desired, use of the Fletcher-

Reeves conjugate gradient technique would speed up convergence

time.

Apogee Analysis

Before deciding to concentrate this study on orbits

with an 80 km perigee a feasibility study of other orbits

was undertaken. The results of Harding's research indi-

cated orbits between 70 and 85 km perigees were profitable

for the aerodynamic turn maneuver. However, initial runs
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at 70 to 75 km perigee altitudes ran into difficulty

when the viscous parameter, VBAR, fell below the .01

value which was the limit of orbiter aerodynamic

coefficients of lift and drag. Inclination changes

at perigees of 85 km and above were insignificant since

atmospheric density at these altitudes is too low for

an effective aerodynamic maneuver. While it would be

possible to compute lift and drag coefficients for perigee

altitudes below 70 km, extended operations at these

low altitudes are unrealistic because of the heating

effects on the orbiter at hypersonic velocities. This

tends to indicate the aerodynamic turn maneuver, while

feasible, has a limited range of perigee altitudes that

produce significant orbit inclination changes.

Comparison of the aerodynamic turn maneuver to the

pure rocket burn is a purpose of this study. For a

circular orbit, the inclination change (Ai) generated by

a rocket burn of a specific change in velocity (Av) is:

arcsin - Av/2v

2

The value used for v is the scalar velocity at apogee.

Apogee is chosen since there the shuttle will have the

lowest velocity and the largest Aiwill be obtained for

a specified velocity change component perpendicular to

the plane of the orbit. Although the formula list above

is for a circular orbit, the resulting Ai computed still
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provides a good comparison value since the shuttle orbit

is nearly circular.

The resulting Ai for a given Av using a rocket burn

is listed in Table XI

Table XI

Inclination Change

Using Rocket Motor

AV (mps) 40 50 60 80 100 300

Ai (deg) .286 .358 .429 .5'72 .716 2.15

The maximum orbit plane change obtained by the optimized

controls in the aerodynamic turn maneuver for the three

reference orbits with a Av of 60 mps is listed in Table XII.

Table XII

Maximum Orbit Plane Change (Av=60 mps)

ORBIT

80/300 80/500 80/650

Ai(deg) .04 .44 .71

It is apparent that the 80/300 orbit accomplishes almost

no inclination change. When compared to the rocket burn

results listed in Table XI , the 80/500 orbit is successful

in achieving more inclination change while the 80/650 orbit

oetters the rocket burn by 65%. The implications here are
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that as the reference orbit gets more elliptical the

aerodynamic turn maneuver is more profitable. Why this

occurs can be explained by comparing the velocity histories

of the reference orbits inside the atmosphere. As the

orbit becomes more elliptical the velocity of the shuttle

increases in the portion of the orbit near perigee. The

velocity of the shuttle at perigee is listed in Table XIII

for the reference orbits.

Table XIII

Velocity of Orbiter at Perigee

ORBIT

80/300 80/500 80/650

VELOCITY 7.88 7.97 8.00

(KPS)

While this has the effect of raising freestream Mach

number, it causes a reduction in the value computed for

the visctosity parameter (VBAR). Table XIVlists the time

spent inside the atmosphere for each reference orbit. The

effect of tho higher velocities in the more elliptical orbits

is quite apparent in the reduced time the more ellipitcal

orbit allows the shuttle to stay in the atmosphere.

Table XIV

Time Inside Atmosphere

80/300 80/500 80/650

TIME 62 0
(sec) 931 621 600
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To understand why the smaller VBAR values result in

larger inclination changes it is necessary to look at the

VBAR values calculated for the orbiter. Table XV lists

the VBAR history for each reference orbit for the portion

of the orbit between entry into the atmosphere and perigee.

The VBAR history is mirrored for the portion of the orbit

from perigee until it departs the atmosphere.

Table XV

VBAR History in Atmosphere (Av=60 mps)

VBAR

100 .232 .098 .097

95 .095 .094 .093
Altitude

(km) 90 .090 o86 .075

85 .062 o62 .059

80 .047 .045 .038

80/300 80/500 80/650

By calculating the L/D ratios for the VBAR's listed

in Table XV , a comparison can be made of the efficiency

of each orbit. These L/D ratios are listed in Table XVI.

Table XVI

L/D Ratios Inside Atmosphere (Av=6 0 mps)

L/D RATIO (= 250)

80/300 80/500 80/650

100 .761 1.10 1.09

ALTITUDE 90 1.12 1.13 1.18

(k)80 1.35 1.38 1. 40
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The L/D ratios in Table XVI indicate that as the orbiter

enters the atmosphere at a higher velocity because of a

more elliptical orbit, the aerodynamic turn maneuver is more

efficient. The more efficient maneuver obtains more inclin-

ation than the less efficient maneuver for the same specified

velocity loss.

At this point, it is desirable to look at the results

of changing the acceptable velocity loss per orbit. A

velocity loss of 300 mps is considered to be the maximum

acceptable Av loss in an aerodynamic turn maneuver. This

figure is used since that it the maximum Av the orbiter

rocket motor can produce using internal fuel.

The inclination changes listed in Table XI which were

obtained using only the rocket motor show that Ai is a

linear function of Av for all values of Av considered in this

problem. Based on these results it appears that accepting

a larger Av loss per orbit during the aerodynamic turn maneuver

would give a larger Ai proportional to the increase in Av.

Table XVII indicates this did not occur. In fact the

lower velocity loss returned a proportionally higher Ai.

Table XVII

Inclination Change for Various Velocity Losses (80/500 orbit)

VELOCITY LOSS (mps)

30 40 50 60

Ai(deg) .27 .35 .37 .44
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These results show that Ai is not a linear function of

Av for the aerodynamic turn maneuver.

When the optimization routine is constrained to

lose a larger velocity per orbit, there are essentially

two ways to do this. One, the orbiter can descend to a

lower altitude and stay longer in the atmosphere. Since the

program used here specified the orbit to be optimized,

this option was not available. The second method which

could be used is to increase the angle of attack. What

must be anLlyzed here is the effect of constraints in

the optimization routine. Because the optimization

problem is set up to obtain the maximum Ai for a given

Av, the program makes no effort to find the most efficient

L/D ratio for each orbit. The optimum control history

for each orbit will be applicable for a specific velocity

loss. However, there may be another velocity loss which

will produce the most efficient Ai in terms of Av expended

to obtain the inclination change. Thus, the lower specified

velocity loss returned a larger Ai on a percentage basis.

To understand why this occurs it is necessary to calculate

the L/D ratios at various angles of attack. The L/D

ratios for different angles of attack at perigee VBAR

are listed in Table XVIII.
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Table XVIII

L/D Ratios versus Angle of Attack (Perigee VBAR)

L/D RATIOS

80/300 80/500 80/650

200 1.21 1.30 1.39
Angle of
Attack 30 1.19 1.23 1.275
(deg) 400 .963 .982 1.00

500 .726 i .732 .744

Table XVIJI shows that as angle of attack increases above

200 the orbiter L/D ratio becomes less efficient. Aero-

dynamic lift and drag coefficients are available only

for angles of attack between 200 and 500. Thus, the

most efficient aerodynamic turn maneuver for any orbit

in terms of L/D ratios would seek to maximize Ai for Av

which called for an angle of attack of 200. The optim-

ization problem can be changed slightly so that angle

of attack is constrained to remain at 200 Various

acceptable Av's could be tried until an optimum control

history for angle of bank is determined that maximizes

inclination change.

The inclination change which this procedure would

generate is going to be small (approximately .200).

However, this inclination change will be the largest one

possible for the most efficient orbiter L/D ratio. The

orbiter can now utilize this optimum cont "ol history over
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several orbits until the desired orbit plane change is

obtained. Using this approach until the total Av of

the orbits reaches the 300 maximum allowed, a large total

Ai is possible. This technique on the 80/500 orbit

produces a total inclination change of 30 while the 80/650

orbit achieves a 40 inclination change. Thus, the Ai

obtained by the aerodynamic turn maneuver exceeds the inclin-

ation change of 2.150 generated by the rocket burn (Table XI)

by 40% on the 80/500 orbit and by 86% on the 80/650 orbit.

Higher-Order Control Analysis

The optimization program was started with the "best

guess" of the controls coefficients as explained in Chapter

IV The control coefficients were initially constant

values. The program was allowed to optimize until the

increases in inclination change were insignificant. Controls

were then increased to three parameters for both the

angle of attack and angle of bank and the process repeated.

This procedure was accomplished again for five,

seven, and nine control parameters for only the angle

of bank. Higher order controls for the angle of attack

did not prove necessary since angle of attack essentially

remained constant between 21°-240 depending on the

reference orbit.

The increases in control parameters for the angle

of bank proved beneficial with each increase raising the

inclination change obtained. This occured through seven

control parameters for the angle of bank. Beyond seven
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parameters, there was no appreciable increase in inclination

change. The plots of control history and inclination change

are listed in Figures 3,4,5, and 6. The increase in Ai as the

control parameters increased from one to seven is approximatex''

.110. This indicates a nearly 30% improvement in inclination

change can be gained from the use of higher order controls

rather than a constant bank angle.

The control history for the seven bank angle parameters

indicates a converged solution. The oscillations in the ban:

angle history for that portion of the turn inside the atmosphere

(.3 <Time <.6) have damped out. Further increases in the

number of bank angle parameters had little effect on the

control history.

An analysis of the control history indicates the

converged solution commands the shuttle to roll inverted,

p=180 ° , as the atmosphere is approached. This will orient

the lift vector to aid in reaching perigee. The bank angle

is slowly reduced until the atmosphere is reached with

S=0 0(TIME=.3). Most of the inclination change occurs

between .3<TIME<.6, where the bank angle slowly decreases

from 800 to 600 As the atmosphere is departed (TIME.6),

the lift vector is oriented up ( =0 ) to assist in returring

to the specified final altitude. Flying this control

schedule is easily within the capabilities of the orbiter's

computer.
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This study has shown that the aerodynamic turn maneuver

is profitable for the Space Shuttle Orbiter and a flyable

control history does result from the use of higher order

controls and optimization. However, the small inclination

changes available from the maneuver and the low perigee,

high eccentricity orbits which must be used to get meaningful

inclination changes, severely limit the usefulness of this

maneuver. Additional research on this subject is not

recommended.
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APPENDIX A

Lockheed Bridging Formula*

*(Ref 5:53)
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The Lockheed Bridging Formula is used to evaluate the

aerodynamic force coefficients for the Space Shuttle Orbiter.

The formula bridges the transitional flow regime from
continuum flow to free-molecular flow. The formula is:

+ n,Ctrans C cont + (CF.M. - Ccont) sin (r(A + B log 1 0Kn))

where

Ccont = viscous force coefficient values at VBAR = 0.08

CF.M. = viscous force coefficient values at VBAR = 5.2

(free-molecular flow)

n= 2

A = 3/8

B = 1/8

K = Knudsen number = X/Ln ref

Lre f = 12.059 meters

= mean free path = RT/P (2Na 2)

R = universal gas constant = 8.314 x 103 N-m/kg K

T = temperature

P = pressure

N = Avogadro's number = 6.022 x 026 kmo-

a = effective molecular collision diameter

-103.65 x 10-  meters
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APPENDIX B

Optimization Program
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The program used to solve the optimization of the

orbiter aerodynamic turn maneuver is listed in this appen-

dix. A flow chart is included to show the calling order

of the subroutines (Fig 7).. The program, as listed here,

is set up to solve the optimization problem using the

gradient technique. Comments are incorporated into the

program to explain the function of the subroutines and

define key variables.
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CONTROLS PROGRAM
INPUT MAIN

SUBROUTINE
EOM

SUBROUTINE
ODE

SUBROUTINE

F

0CONVERGENCE PRINT

CONTROLS
SUBROUTINE

SUBROUTINE 

CNRL

TMTOP

TAn

SUBROUTINE OT L

CHETA

SUBROUTINE

BIVINqT

Figure 7, Optimization Program Flowchart
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C *~~' THE PROGRA.M MP IN COMPUTES THE PARTIAL
C OERIVITIVES USED IN THE PARAMETER OPTI9I 7YATION SCHEIEe
C A SECOND-OlRDER PAkAMETEF OPTIMIZATION TECHNIQUE IS JSE0
C BASED 04 THE PAPER~ BY EDGEMAN AN) HULL eY THE SAME qA,4Eo
C

PROGRAM SHUJTTLE (INPUT jOUTPUT ,TAPE5 =1 NPJTqPLOT)
EXTE'RNAL F
DI ME Ns ION COV(8,i2) ,CLV(8,i2),ARAY(2',15),7B(6),Yi(&I
DIMENSION XI(6),YP(6),WOR(2 ;),WOK()ljNM(2),Y(61
DIMENSION GB(i)),GBB(iO,IU),FBT(IO),FB3(iV,±0G),FBBT(i3,i0)
DI MENs I oNoB 0( i')9 ,V'(i) z ( 10)
O1iIENsrON XP(6),O8P(IC),RG(R),H!Hi3T(4,4bslBHBTI(494)
DIMENSION X PP (b),IX P I(6),9XP 2 (6) 1X P 3 )X Pl4( 6)
DIMENSION HP(2),HPP(2),HiPI(2),HP2(2),HP3(?),HP4(2)

-Fi ('4,4) , F I( 4 9 &),.rG2)
DI HE N3 1N RP (2),1RQ (2),qUC (2) , S(10) ,C(2 ),qh8 10O,2)
DIMENSION DELINC(7)
DIMENSION AOS(50),INKCHG(50),RADIA(!.fU,ACA(5V),TIME-(5)
C3OqO/3I/(16)
C0MMON/BP/BP(16)
COMMON/N/NE ,NPqNPPlNPP'
COMMON LJHO,VISCRENVeARPHICOEFORG, COFFLFT
COHMON COVCLVARAY9VlRAOT
COMMON NOM
REAL NOMoINKCHG

C INITIAL CONDITIONS, XI(l THRU 3) is XY,'l POSITION
C INITIAL CONDITIONS, XI('4 THRU 6) IS VXjVYjvz VELOCETY

READCC(ARAY(ItJ),Ji5),I=i,22)
C CDV IS THE DRAG COEFFICIENT DATA
C CLV IS THE LIFT COEFFICIENT DATA
C ARAY IS THE ATMOSPHEikIC MOOEL DATA
C NE=NUHIER OF STATE EQUATIONS
C NP=NUM9SR OF PARAMETERS
C NC=NU48ER OF CONSTRAINTS
C NP~1. 440 NPP2 ARE THE NUMBER OF CONTROL PARAMETER
C COEFFIOIENTS FOR ANGLE OF ATTACK AN3 BAtIKgRESPECTIVELY

N= 6
NE :6
NPs?
NC=2
NPPI=3
NP P2=3

C Cl. A43) C2 ARE THE CONSTRAINTS. H1ERE FINAL ALTITUDE AND VELe
C16535. 0
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IT=ITI~i
C 0 VALUES ARE COEFFICIEN~TS OF C0?4TROL P R?'METERS

B( i) =156i 45t654223
S( 2) 23oi'1'486U31V3
8( 3)=. )072784:,74t'89i

8(5) =o 93231BE-75716
8(6) =-1.i',8850248O
BM) =a 1i377977989972

C C's AR~E INITIAL LAMBDA VALUES*
C(i) =e 01
C( 2) .~i
PCT .,I

C DELB IS PERTUgATION STEP SIZE
DEL4=lIo0~E -0C2

C OT IS THE TIME STEP S1ZE
DT.oEE 5665E-0 3

Ica CONr1NJE
PRINT 50,IT

80 FORMAT(iH,*ITERATION *,I3)
D0 71 EiNP

C NEXT STATEMENT CONTROLS WHICH ITEIATION GETS PLOTTF-o.
C PLOT ROUTINE PLOTS A LEFT Y AXIS (ANSLE O~F BANK) VEPFS*JS

C THE X AYIS (TIME) AND A RIGHT Y AXIq (INrLINATION ",HANGE)
C PLOT IS ' INCHES HIGH BY 5 INCHES WIDE.

IF(IT.IE.3) GO TO 732
T3* 0

00 632 '14=i,23
INKCHG(N1) =ASCINKCHG(N))

632 CONTINUE
DO 733 4.=1,2i
CALL T-iETA(1,UN'4)
AOBCN)=UNM(2)*57. 29v770,',U
TIME(N)=T
T=TG§. Q

733 CONTINUE
CALL PLOT(Ov,.59'3)
CALL PLOT(252s~,-3)
CALL PLOT(6.,O.92)
CALL PLOT(O.,7s,-2)
CALL PLOT(-6*,O.,-2)
CALL PLOT (Co.-7@,-2)
CALL D.OT(.5,.5,-3)
CALL S .ALEMTMEq,f21,i)
CALL SCFALE(AOB6.2iqi)

.CALL AXIS(0.,0.,A.HTIIE-4,5.,O.0,O.o ,.2)
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CALL AxIl.(o*90*p17HANGLE OF BANK (B)VVY,6,9O.00.O,3co
T1~4E(22) =Oo 0
TIME(23)=.2
AO3(22) =n*C

CALL LINE(TIMEAB2i,1,2,29)
IS =Is-i
CALL SCkLE(INKCHGsb.,ISp 1)
CALL Axr(s (5.0*922HINCLINATION CHANGE 4)p2v-9lV

UNKCHG(IS+i),IN4KCHG(IS+2))
CALL LINE (TI1MEINKCHGISlip2,07)
CALL PLOTE(N)
GO TO 5

732 PRINT Sli,3
801 FORMAT(IX,6E2.12)

00 12 1iNE
12 Yi(I)=XI(I)

NOM=0 #
CALL E,:9CTYiv,DEGINKCHG ,IS, _4.0

NOM=NO4+I .

PRINT~p,"H(i) AND H(2)= ",H(I)PH(2)
DELINC(i)=-DEG
DO 78 h(:iNP
00 75 LiNP

75 SP(L)=3(L)
OBP(K) =DFLB*BP(K)
IF(ASS(OBP(K)) LE*DELB) 0EP(K)=DEL5
BP (K) = :(K) +OBP (K)
00 13 11,pNE

13 XP(I)VXI(I)
SP=2*U
CALL EO'1(TXPDEGINKCHGIIPSP)

HP ( 2)= (( ( ( 4 * 2 XP-C i+ P 6) 4 ) * e ) C

DELIN^ C2)=-DEG
00 7 50 L1,gNP

750 BP (L) =3(L)
BP(K)=qP(K) -OBP(K)
00 14t 11,NE

14 XPP(I)=KI(I)
CALL EOI(TXPPDEGINKCHGIIPSP)
HPP(I) :RA-ci
HPPCZ)=((XPP4)*02+XPP(5)#*2+XPP5)*42)44.5)-C2
DELINC (3) =-DEG
00 77 L1,gNC

77 :;3(PKz(H(L HPL)M **9M
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G9(K)= (DELI NC(2) -DELI NC(3))/C2.0'D3SP(K))
78 CONTINUE~
C THIS SECTION IS THE PARAM~ETER OPTIHI7ATICN SCHEME

PRINT" es
PKN*84* H-B MATRIX '4*
PR.INT*, C HB(IpM) ,MiNP) 9I1igNC)
PRINT#$"
PRINT* ,""''4 GB VECTOR ~'
PRINT', CG9(K) ,K~igNP)
PRINT*,
DO C4 I~iq~lp
00 4 J~ivNC

4 H5T(IJ)=HB(JI)
00 5 I:1,
DO 5 K~igNC
HBHB3T(I, K)=C.0O
DO 5 J~i,NP

5 H9HBT(IK)=HBH13T(1,K)+HeCI,9J)*HBT(JK)
CALL GAUSD(N-,C~i.C-E-30,H2HPBT,HBHBTI,KER,4)
00 65 !=iNC
RG (I)0* 0
DO G55 J1,qNP

666 RG(I)=RG()+HB(IJ)'GB(J)

0=*001i
00 7 I1,1NC

00 7 J~i,NC
7 C(I) =C(r)+HBHBTI CIJ)m (O*HCJ)-RGCJ))
11 CONTINE

PRINT,"
PRINT',' *IL* C VECTOR "14464
PRINTav U

PRINT9," ",CM9i 9" C(2)
Do io rz1,NP
CC = 0 *
DO 110 JiNC

110 CC=CC+'o(J) *HB (J I)
10 FBT (I ) GR(I )+CC

PRINT',"
.PI~ 94w*****B VECTOR
PRINT',"
PRINT', (F3T (K) ,K=iNP)
00 549 IiNP
00 549 J~iNP

IF(I.EQJ) FB(iJ)=i.t
549 CONTINJE
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00 20 1=iNC
00 29 <:1,NP

00 20 J~iNP
20 ECIq)=E(IK0+F'~(JK)*HE(IJ)

00 25 r~ivNC
00 25 K<:iYNC
'Fi(IqK0=ro0
00 25 JjiNP

25 Fl. IK)=F1(1,K)4E (IJ)*HBT(J,K,)
CALL GAUSP(NlCpi. LE-30,pF1,FIKER'I)
00 30 r=iNC
GCI) =D*C
00 30 J~ivNP

30 G(I)=G(I)+E(ItJ)*FBT(J)
00 548 I=19NC

548 0CCI)=9.L'
0J0 40 I~iNP
S(I)=0ol
00 40 J~i,NC

40 s(i)=s(I)+HBT(IJ)*DC(J)
00 45 I~iNP

00 45 J=iNP

45 0BN1=-SSV(I 0(

00 145 Ii, NP
145 [D8N=0B'4+0'3(1)*OB(1)

09N=Sr)T (n9'N)
SN=0 9 0
00 255 t:±,NP

255 CONTINJE
BN=s(qRr (BN)

0015 50N

'N=SORT (HN)
PRINT*,"*
PRINT,""** DON HN
PRINTIAV
PRINT 92,OBNHN

82 FORMAT (4 X p2E2C 98 f)
PRINTW,
P~N*,** 08

62



PRINT*,
PRINT B3,JR

83 FORMAT('X,6E20.8,/)
PRIINT"
PRINT4,"##II DC
PRINT',
PRINT 8'4,0C

84 FORMAT ('.X3E23.8,///)
IF((0BN.LT.1.3E-P4) .AND (I-.N.LTsi.DE-13) ) 60 TO 60
D0 56 r~i,NP

1F(3(2.t~.EO0) (2)=590 
IFCB(2)eLT*20s0) 8(2?=2C*cG

DO 55 1iNC
55 c(I)=c(i)+DC(I)

IT=IT+i
IFCIT.'ST91TI+25) Go To &Z
GO TO 190

60 CONTINJE
PRINT 85

85 FORMAT(?X* CONVERGENCE ~
PRINT 85,p

86 FORMAT (//,4X,6E~ie12,/f
ST OP
END

C *#***SU3ROUTINE GAIUSO IS A MATRIX( INVIERSION ROUTINEP***F
SUBROUTINE GAUSDCMtEPSvPeqCCvKERLAV)
DIMENSION B8(LAYLAY),CC(LAYLAY),A(20923),X(20920)
EP=E PS
N= M
Of) i.3 Ji,9N
00 100 <=igN

100 A(JtK)=38(JK)
DO I I=iN

00 2 K1,qN
2 X(KgK)=i,.C

00 34 L~iN

Di) 12 K:LN
IF(Z-ABS(A (KL)))ll,12,i2

11 !zABS(A(KL))
I(P =K

12 CONTINUE
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IF(L-KP) 13926929
13 00 14. J=LN

T= A CL, J)
ACLJ)=Ik( KPsJ)

14 A(IP,J)'7
0O 15 J~iN
E=X(L, J)
X(L,9J) = X(Kp 9j)

15 X(KPJ) =7
2C lF(AB3(A(L9L))-EP)5C,50q3&
30 IF (L-N)31 313L,
31 LPi=L+i

DO 36 K=LPiN
IF (A(KL) )32,36,32

32 RATIO=A(KL)/A(LgL)
00 33 J:LPiN

33 A(Kt,J) =fiKJ) -RATIO'A (LpJ)
DO 35 J~iN

35 X (K9 J) =X ( KJ) -RATI O'X(Lt j)
36 C3NTINUE
34 CONTINJE

DO '.3 I~iN
II=N+i-I
DO 43 J=iN

IF(II-N)4i.143,43
41 IIpi~II+i

00 42 K=IIPiN
42 S=S+A(ir,K)*X((,J)
43 XCIIJ)z(X(IIJ) -S)/A (11,11)

fKER~i
00 200 J1,qN
00 200 K=ivN

200 CCCJIO:X(JK).
GO TO 75

50 KER=2
70 PRINT 71.
71 FORMAT (iXfMATRIX SINGULAR IN GAUSD")
75 CONTINUE

RE TUIRN
END

C ***#SUgROUTINE THETA COMPUTES THE AN~GLE OF ATTACKAV BANK
C ANGLES USING THE CHE8YSCHEV POLYNOMIAL FORM FROM SJB*.ZHEBYs

SUBROUTINE THETA(TUNM)
014IENS10'4 UNM(2)
CO'MQON/9P/9P(l6)

CO11ON/N/NE NP, NP~iNPP2I



CALL C4ERY CT)
UNMN i) = * '
00 20 1=iNPPi

UN N C2)=0 *'
00 23 I~igNPP2

23 UNM(2)iJNM(2)+BP(I+NPPi+1)*TOT(I)
RETURN4
END

C *#1*S3OTN CHEBY COMFUTES THE CHEB'VSHEV POLYN04IALS**.**
SUBROUTIN-7 CHESY (T)
COM.4O,4/TSH/TOT (8)
TOTCi) tj*1

TDT(3)t3.LT**2-8.C*T+i. 6
TOT(4) =329 O*T**3-48 .t1+T~ -42+18.O4-T-it I

TOT (8)z:lel
RETURN
END

C ***I'*SUBROUTINE EOM COMPUTES THE INLINATION CHANGECOEG)
C IT USES THE CC66'3O ROUTINE ODE TO DIFFERFNTIATE THE
c EOUATIONS OF NOTION W4HICH ARE CONTAINSC IN SUBROUTINE Fe

SUBROUTINE EON CTYOEG,1NKCHGtIIP, SP)
EXTERNAL F
CO MMON / 93/13( 10)
Co HMON / P/ SP (16)
COMMON/NfNENPNPPi ,NPP2
COMMON JFHOVISC,RENV2-ARPHIC3EFDRGCOEFLFT
COM40N '*DVvCLV9ARAYqVijFAjDT
COMMON 40M
DIMENSION INKCHG (50)
DIMENSION CDV(8,i2),CLV(8,12),ARAYC22,),ZBC8)
0IMENSr0N YC(6) 9YP (6) WORKC(2 ) PI WORK (5) ,UNM(2)
REAL IN(CHG

2 Y(I)=YCI)*io0E+G3

3 ZB(I)=Y(I)
RELERR~io*OE-06

TOUT=3.
ZIFLAG:1
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XOUNT= 2
1 CONTINUE

TOUT=T +)T
CALL ODE (F,6tY 9TqTOUT PRELERRPRELERR IrL AGv WORK9 IWOR()
IF(V34RoLTeO005) GO TO 50
IF(NO4-ioC) 48,44v4,'

4.8 CONTINUJE
40 Ai=Z8(2)f78(6)-Z8(3)*ZB(t,)

Ei=ZB Ci) *'8(5) -ZB(2)* ZB(4)

G=Ai*9i3BfjDi+Ei-'Fl

O=(Bi*2+i**2+Fi4*2) +-C 5$
CI--G/( H*O)
IF(A83(M )*GTeis) CI=ie
AI=ACOS(CI)
OEG=AI '180. Q/3.j(.i5
IFCSP.GT.').0) GO TO 736
IF(TOUT*GE.TTP) GO TO 735
GO TO 736

7355 CONTINUE
INKCHGIIP)=DEG
TTP=TTP4-9. 5
uIP=II-)+i

736 DO 4 K=igS
4 Y(K)=Y(K)*i.0E-03

VEL=(Y(.) 12Y!)*+Y642*e
IFCTOUT*GEoi*0) GO TO 49
IFC(OUNToGT90) GO TO 45
PRINT*,"THIS IS NOMINAL DATA4
GO TO 46

45 IFC(OUNTaLT*50)GO.TO 44
46 CONTINUE

APER=UMiO0.
IF(OUNTeGE:50) KOUNT=l

44 K0IJNT= KOUNT +i
IF(TOUTeLE*1*0) GO TO I
IF(TOUr.GEi.0) GO TO 4f~

49 PRINTf'"THE GEOCENTRIC ALT IS ",RA
RETUR4

so PRN*"cA LESS THAN C*i606 4*VBAR
RETURN
END0

C **4**SUBROUTINE F CONTAINS THE EQUATIO? S OF MOTION WHICH
C -ARE USED BY ODIE.
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SU9ROUTINE F(TYYP)
COMM1ON~ LJPHO,VISC,RENV8ARPHICOEFF:G, COE-FLFT
COMMON -t3VCLVtARAYVipF.ApDT
COtMONfqP/FP(16)
DI 4ENSI10 11 Y (6) tY P(6)9CDV (89 12) 9CL V (6 p2 A RAYC(22 5) UNi(2)
GM 3e*98F522±6 E+ 14
0M=7*292ii59E-05
SA=98. 3
S4z9750!*
RA =(Y (i)*2 +Y (2) 2 +Y (3) 42) e 5
4S =Y 0. ~2 +Y (5) 2+Y (6) 2

CALL Ar4os(TMIW.4oL)
CALL VISC0APATPIWMOL)
CALL THETA(T,UNM)
CALL 93IV~tNT (ALPHAUNM)
PHI=UNM (2)
SP HI=S IN (DHI)
CPHI=CO50 (PHI)
SLIFT=*5*COEFLFT*SA#RHO* VS
DRAG=* 5,1COE FORG* SA*RH04V S
SLM=SLIPT/SM
SOM=DO'.AW SM
AV=Y(4)-OM*Y(2)
BV=Y(5) +OH'Y(i)
CV=Y CS)
AH=BVOIYC3)-CV*Y( 2)
BH=-(AVV Y(3)-CV*Y (1))
CH=AV$Y(2)-BV*Y(1)
AL=CV' 34-BV#CH
BL=- (CVf AH-CHf AV)
CL=BV* A4-BH*AV
SV=(AV*F2+8V*42+CV42)*0 .5

SH=(A602+8H*2+CH*2)**.5

YP (2) sY (5) 0BPCIW
YP(3)=YC6)*BPWi

Yp(I)Y54*8PWi
YS5:-(G4M/R3*Y (2)) +SLM* C-SPHI 4 BHISH GCPHI M PRL/SL) -SOM*3 V
yp (5) YS50 sp(i)

RETURN
ENO
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C #*#**SJPROUTINE ATMOS COthPUTES THE MOL EC* WSIGHT 1W94M) &..

C DE14ISTY OF THE ATMOSPHERE
SUBROUTINE ATMOS(THWMOL)
COMMON UPHOVISC,RENV8ARPHICOEFDRGCOEFLFT
COMMON -DVvCLVqARAYV1,RAOT
DIMENSION COV(8, 12) OCLV( 8,42) 9ARAY (2?9,
GM=3*95522i6E+14
R=8e*314~32F~+ C3
RHOZ=i*2250
T47:28SAi5
U=RA-6356766eO
00 1 M~1J,22

7 CONTINUE
M=23
4=45

6 IF(ARAY(M,4))8998
8 TM=ARAY(m,2) +ARAY (M,4) '(U-ARAY(Mvi))

OGM'ARY (1195) /(liRA*R"3)
SI M= X (ID ()AA (.4 )) (L G AA (9 )T ))A A ,

-3)
GO TO 10

9 TM=ARAY(M92)
102GM4 ARA&Y 09,5) / (R'*RA*2)

10 RHO:RH07*SIGHA
WMOL=ARkY (M,5)
RE TURN
END

C *'**#SJPROUTINE VISCPAR COMPUTE3 VRAR***K*
SUBROUTINE VISCPAR(TMWHOL)
COMMON LI,RHOVISCRENVeARPHIC0EFr)3RG, COFFLFT
COMMON a-DVtCLVjAF.AYpV±,RAOT
DIMENSION CDV(89 12),qCLV(8,i2),9ARAYC(2295)
T=TM*WMOL/2899644
VISC=die456E-06*T4,*i*5)/ (T+i1Q.4)
REN=R4O0fVI'32.'? IVISC
A=SQRT (iei*83i432E+U3TMI28.964'.)
TP.B455T+13663+O.Oi4625*((Vi/A)442)
EXPi=-5. /T
EXP2=-5*0f/TP
ANUM=r+i2291*io0* EXPI
AOEN=TPI122.ii*'EXP2
CP=( (P/T) **.5)#ANUMi/ADEN
V3ARC ViIA) *CCP/REN)**ev,
RETURN
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c 9*4*SJBROUTINE BIVINT IS THE SIVAR.IAN7 INTERPOLATION SCHEME
C USED T) nENERAT ED TH E 0ORPIT ER COE FF ICI ENTS OF LIFT AND DRAG.

SUBROUTINE BIVINT(ALPHAUNM)
COMMON UPHOVISCp,kEN ,V8ARtPHICOEFORGCOrFLFT
COMMON ZO0VCLVAPAYViPlAOT
OIMENsr3N CDV(8,12),CLV(8,12),ARAY225),tJHC(2)
IF(VBAR.,GT95*2) GO TO 1E
IF(UNM('i)oLTs20e0) UNl-(1)=20oC
IFCUNM(i) .GTo50. t') UNM(I) =50*0.
ALPHA=UNM(i)
00 3 I=2p8
IF(ALP~k-COV(Ipi) )2,2,3

3 CONTINUE
2 OA=CDV(Ipi)-ALPHA

00 5 J=?9i2
IF(VBAR-CnV(iJ) )4,4,5

5 CONTINUE
4 DV=CDV (1J) -VAR

0 DV/DlEL V

0O 7 I=298
lF(ALP4A-CLVCI~i)) 6,6,7

7 CONTINUE
6 DA=CLVCTti)-ALPHA

DO 9 J=2g12
lF(V9AP,-0LV~iJ) )8,8,9

9 CONTINUE
a OV=CLV(tJ)-VBAR

DELV=CLV (iJ) -CLV(IJ-i)
P=DV/DELV

COEFLFT= (i-P)* (1-0) *CLV( I J) +P* (i-Q) 4CL VQ tJ-i)+* Q -P) *CLV
-i J) +P*Q*CLVC(I-iJ-i)
GO TO ii

10 COEFOR5=O0
COEFLFT=g00

11 RETURN
END
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